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1. Electronic Density of States 2+2+4 Points

Consider a system of free electrons in d spatial dimensions confined to a cubic volume Ω = Ld.
The single-particle wave functions ψk(r) = eik·r/

√
Ω are eigenfunctions of the single-particle

Hamiltonian Ĥ = p̂2/2m with corresponding energy eigenvalues ϵk = ℏ2k2/2m. Assume periodic
boundary conditions, i.e., ψk(r) = ψk(r + Lei) for i = 1, . . . , d with ei the ith unit vector and
L the side length of the cube.

(a) Derive the quantization condition ki = 2πni/L, ni ∈ Z for the components ki of the wave
vectors k ∈ R

d from the requirement of periodic boundary conditions in each of the d
spatial directions. Which volume (∆k)d can be assigned to a quantum state with fixed k
in k-space?

(b) The number of electrons in the system can be computed from

N = 2
∑
k

Θ(ϵF − ϵk).

Here, ϵF is the Fermi energy,
∑

k . . . denotes the sum over discrete wave vectors, Θ(x) is
the Heaviside function, and the factor of 2 is due to spin degeneracy. In the thermodynamic
limit N → ∞, Ω → ∞ with n = N/Ω = const. the sum can be replaced by integration over
continuous wave vectors. Perform this limit an find an expression for the particle density
n. Show that the particle density can also be represented as

n =

∫ ϵF

0
dϵ ρ(ϵ),

with the density of states per volume

ρ(ϵ) = 2
1

Ω

∑
k

δ(ϵ− ϵk),

and find the corresponding expression in the thermodynamic limit. The factor of 2 again
takes into account the spin degree of freedom.

(c) Compute the function ρ(ϵ) in the cases d = 1, 2, 3.
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2. Random Walk in one Dimension 4 Points

Consider a particle in one spatial dimension, whose position at time t = 0 is given by x0. The
dynamics of the particle takes place in discrete time steps. After the ith time step, the particle’s
current position has changed by ξi = +∆x with probability P+ = 1/2, and by ξi = −∆x with
probability P− = 1/2, where ∆x > 0. For a total of N time steps, the position of the particle
can be described by

xN =

N∑
i=1

ξi + x0.

Compute ⟨xN ⟩ and
〈
(xN − ⟨xN ⟩)2

〉
. The random variables ξi, i = 1, . . . , N are assumed to be

independent and identically distributed. That is, they are mutually independent for i ̸= j and
are all distributed according to {P+, P−}. How does

〈
(xN − ⟨xN ⟩)2

〉
behave with increasing N?

Specify how the limit ∆t→ 0, ∆x→ 0 has to be understood, in order to obtain a finite result.

3. Unitarity and Time-Reversal Symmetry I 3+3+3 Points

In the following, consider the single-channel scattering matrix S that maps the amplitudes of
incoming states (iL, iR, where L: left, R: right) to amplitudes of outgoing states (oL, oR) of
some scattering region, (

oL
oR

)
=

(
r t′

t r′

)(
iL
iR

)
, where S =

(
r t′

t r′

)
.

In the absence of magnetic fields or magnetic impurities, the Hamiltonian entering the Schrödinger
equation obeys time-reversal symmetry (TRS): this tells us, that under t→ −t, for every soluti-
on ψ of the Schrödinger equation, ψ∗ is a solution to the time-reversed equation (for simplicity,
the spin degree of freedom is not considered here). In the scattering-matrix formalism, besides
complex-conjugating amplitudes, incoming states become outgoing ones under time reversal and
vice versa, while scattering is described by the same S, i.e., the following relation holds:(

i∗L
i∗R

)
=

(
r t′

t r′

)(
o∗L
o∗R

)
.

(a) From unitarity (S†S = 1) of the scattering matrix, derive the relations

T +R′ = 1, T ′ +R = 1, T +R = 1 and
r

t′
= −

(
r′

t

)∗
,

where |r|2 = R, |t|2 = T and |r′|2 = R′, |t′|2 = T ′.

(b) Show, that TRS implies S = ST , where ST denotes the transpose of S.

(c) Additionally assuming TRS, derive the following relation for amplitudes:

r

t
= −

(
r′

t

)∗
.
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